The FORCES range enables clear and comprehensive learning of STATICS and DYNAMICS covering a variety of theories and topics. An understanding of the way in which forces act and react, is fundamental when studying the application of loads on a variety of fixed structures and rotating machinery. The FORCES form a comprehensive range of equipment, from fixed beams through to rotating machines apparatus, equally suitable for demonstration and experimental work.

HFC1 Reactions of Beams Apparatus

This apparatus is designed for simple experiments and demonstrations on simply supported beams. Two spring balances act as supports and enable reactions to be read directly. Three movable load hangers allow loads to be put in a number of positions.

HFC2 Triangle of Forces Apparatus

A bench mounted circular table with a central pin and 360º protractor has three pulleys on adjustable clamps round the edge. Conditions of equilibrium are obtained by centralising a small cord ring over the central pin with cords to load hangers where the loads and lines of action are variable. The triangle of forces in equilibrium can be constructed and the resultant of two known forces can be found.

HFC3 Funicular Polygon and Forces Apparatus

This apparatus is a more comprehensive and versatile version of the HFC2. A simple but elegant demonstration of the conditions of equilibrium for three or more coplanar forces acting either at a point, on a circular disc or on a rectangular shape.

HFC30 Archimedes Principle Trainer

The Archimedes principle states: The magnitude of the buoyant force equals the weight of the fluid that the object displaces. When the test objects are suspended the moment lever arm is brought to the horizontal by moving the balance hanger and monitoring the small spirit level until level. When the test object is lowered into the fluid the counterweight is adjusted to bring the moment lever arm back to the horizontal. The change in position of the counterweight gives rise to a reduced moment thus indicating the magnitude of the buoyancy force being applied to the object.    

HFC4 Shearing Force Apparatus

This experiment demonstrates the nature of the internal forces and their dependence on the external system of forces for a simply supported beam. The experimental beam is in two parts, joined by a pair of ball bearing rollers running in flat vertical tracks. To develop the internal beam forces at the section an underslung tension spring is used to resist the bending moment, while an overhung spring balance provides the vertical shearing force. The shear force can then be directly read from the vertical spring balance. The beam is simply supported on end bearings and several weight hangers can be attached at any position on either side of the joint.

Products per page:

Back to top